默认搜索
当前位置:主页 > 热门新闻 > 正文
  • 今日头条百亿市值背后的算法:巨大可能与现实困境投 …
  • 日期:2018-05-09   点击:   作者:admin   来源:未知   字体:[ ]
一点资讯紧跟其后。1月20日,在其与凤凰博报联合举办凤凰一点通年度影响力自媒体盛典上,一点资讯宣布打通两家平台,资源共享。一点资讯副总裁吴晨光面对台下上百位自媒体人,也在极力渲染一点资讯的读者画像等算法技术。鹬蚌相争刚刚白热化,已有一只黄雀在身后腾讯的同类产品天天快报已经低调运营了一段日子,不知道在憋什么大招。人们应该记得,2014年多家传统媒体因版权问题对今日头条发起声势浩大的诉讼。2015年11月也有媒体发起对一点资讯的版权诉讼,但反响很小。再到如今,媒体人坐在台下为张一鸣鼓掌捧场。也许真是时势变化,技术的发展已经让内容生产者从惊恐到不得不适应。首先,算法是一种类似金融资本的东西,是方法。就像财务投资者不必追求理解公司具体产品本身,只在乎能否增值。算法不管内容实质是什么,只管能否数字化、分类集合、反馈优化,是处理海量信息的方法。与资本一样,它能提升效率,也与个体有矛盾。但对于资讯内容传播来说,这还不够。内容不是桌椅,桌椅只要伺候我们,内容却是装载了他人灵魂的存在,要和我们互动、砥砺。这就是第三层,算法要想触及灵魂,还得努力。算法架构师曹欢欢和增长团队的张楠都公开讲解过,如何用AB测试来判定一个产品修改的效果。比如一个按钮是用红色好还是用蓝色好,那么就各向1%的用户发布两种颜色产品,哪个下载得好就推哪个。如果用在新闻上,就是同一条新闻由编辑给两种标题,测试哪个标题点击好。双盲检验,是先让算法判断一个新闻的分类和推荐对象,然后让两个编辑分别检验,如果结果一样,就通过,不一样就请第三人判断并汇报程序员,重新调整算法。在我看,这背后是一个类似神经算法的刺激-反应模式根据算法反应对错调整某个参数(权重),也是一种人工智能里常见的半监督式学习。这大概也是张一鸣口中人机结合、发挥人的智慧的证据之一。算法五花八门,我说的也不准,主要看气质算法这个孩子不知道新闻说了什么,只知道哪些新闻是同类,哪些是热点(点的人多当然就是热点,机器可以通过一种组合算法来判断,可以参见南京大学新闻传播学院助理研究员、奥美数据科学实验室主任王成军的文章《今日头条怎么计算:网络爬虫+相似矩阵技术运作流程》)。文章标签、关键词等也起到作用。经典的贝叶斯问题在小学奥数里就有(美剧《生活大爆炸》里也出现过):假如分别有A、B两个口袋,口袋A里有7个红球和3个白球,口袋B里有1个红球和9个白球,现从这两个口袋里任意抽出了一个球,且是红球,问这个红球是来自口袋A的概率是多少?头条有个独特的算法能推算用户的年龄,即使你没在头条订阅。系统根据已确定年龄人群的动作、特点和兴趣做了一个模型,由协同原则判断读者是否符合这个模型,这时机器先预判是否为该年龄段的用户,同时机器再根据你的阅读动作最终确定年龄段。美国的纽约时报和赫芬顿邮报同一个美国梦,也具有显著不同的气质。有自己相信并追求的价值观,追求新闻事实时候有非如此不可的冲动,写作时有难平之意化为不休的诉歌,这才是风格。这还不只是差异化竞争问题,更重要的是产品的内在矛盾。头条们不止是平台,因为伪装不是白装的,新闻客户端的表象与算法机器的矛盾是无法摆脱的原罪。形式不是内容之外可有可无的事物,形式就是内容。头条们注定不可像没有首页推荐的微信公号平台一样,真的只做完全中立,没有一点情感和立场的平台。人们都认为你是资讯客户端,你就要做资讯媒体的事情,哪怕和算法的性格有矛盾。但矛盾不是缺陷,矛盾是推动自身进化的动力所在。正如一点资讯董事长刘爽所说,如果头条是造纸术和印刷术,那么一点资讯就是火药和指南针。这两个APP都以千人千面为核心竞争力,因为确实像造纸术一样改变了传播。但一点比头条更近一步:所谓火药,是通过搜索唤醒了沉睡在APP里的信息,你可以通过搜索、订阅,两步完成你对任何你感兴趣内容的定制。至于指南针,我这样理解:因为一点后台有非常精准的用户画像,所以可以把最符合你兴趣的内容分发给你。用我们内部的一句话说:大事件作出共鸣,个性化要像蛔虫。可以看出来,作为后起者,一点资讯一方面不得不通过头条来定义自己,同时又必须有所区别,特别强调搜索。不过从用户直观感受来讲,这种区别是很难看出来的。头条一样有搜索功能,也会记录读者的搜索行为。可能,郑朝晖有雅虎的经历,在搜索上会有独到经验。文本分类和语义理解,社交网络分析,网页搜索,推荐系统等领域的特定算法,理解自然语言处理、机器学习、网页搜索,推荐系统,用户数据分析和建模的基本概念和常用方法。最近两个月,一点资讯封掉了大概7000多个号。古玩、健康、财经等,都是重灾区。我们的竞争对手,在放宽入驻条件,但我们相反高标准,并且实行严格的分级制度。从一级到六级,级别越高标志着你的内容越优质,这样你得到的展示量就越大。头条大举招募媒体人入驻平台,并加大对自媒体平台的投入,这是有意识地抢占底盘,获得内容版权,也是无意识地要让自己更生动。算法只计算异同关系,只机械地问你要还是不要,而没有计算诸如相对关系、主从关系等等复杂的关系。就像一个不太会恋爱的直男,听到对方说no的时候,并不善解对方真正的意思。算法能否采用更好的策略,除了数学思维本身,还在于算法对人性的理解。非线性思维才能贴近人性哪怕是庸常之辈,也会渴望有一只手能托起自己的头颅。假如用户多点击了几次惊悚社会新闻,算法可以继续推送同类资讯,但是一定要显出一种我猜你其实也是个有高尚趣味的人的姿态可以于惊悚新闻信息流里突然插入一条洗眼资讯,可以是正能量,可以是对立面,可以是新闻分析。既然瀑布流里面可以插入广告,为什么不能插入和用户点击趣味相反的文章?我不了解具体算法设计问题,也许需要更复杂的集合算法。每条资讯有自己对应的镜像,就像本我对应的超我,就像西斯武士对应的绝地武士。不甘做机器保姆的小编可以参与打造这样的集合,提升机器灵魂的同时提升自己,共同进化。彼此是对方的启蒙者,而不是做一个被动的仆人。也许会有偏差,会有博弈,但魅力就在这里。在《失控》看来,人机之间要有一定的对抗才能共同进化。也许算法在等待读者自己走出沉沦,但对抗就要求算法更弹性一点,更抢先一点,主动试探读者是否想要逆风而行。用资讯测试读者,是把读者看作已完成的人格。而人性是永远在路上的未完成之物。人性和人类的创造物,需要彼此激发,螺旋上升。分类聚合算法只是把自己看作一个置身事外的观察者,正如科学试验里的观察者,以为自己不在事件之中。但这是不可能的,算法已然在参与人性的构建,只是采取了消极的方式人以群分,每个人沉沦在自己的趣味里。后果是读者的极化,老死不相往来,像黑客帝国里的人茧。人茧衰弱的同时,系统的活性也在衰减。贝叶斯理论没什么神奇的。归根结底,它就是在说,你的信念只和它的证据一样有效。如果你有好的证据,贝叶斯理论就能得到好结果。如果你的证据不足为信,贝叶斯理论也就没什么用。进入的是垃圾,出来的也是垃圾。对贝叶斯算法来说,初始确定的概率很重要,比如前面提到40%的成年男性喜欢阅读军事新闻,这个概率判断就是初始确定的概率,能通过社会统计获得比较接近现实的数字,一般也比较符合常识。但是对于很多事情,比如上帝存在,初始概率就难说了,有人会定为百分百,有人会定为零,于是最终结果不过反映了给出初始条件者自己的主观愿望。即便40%的成年男性喜欢阅读军事新闻,表达的也是现有的社会状况。最终的资讯推荐结果则反过来强化了这个初始概率爱看军事的就更多地看到军事新闻。认为性别是后天建构的女性主义者恐怕就会讨厌这种刻板状况。张一鸣演讲批评微信朋友圈信息推荐效率低,在某种程度上是对的。在朋友圈获得优质信息的效率取决于你的朋友质量,有精彩朋友才有精彩资讯,如果都是晒海滩的当然没意思。头条不受社交关系限制,对于缺乏丰富社交层次的人来说,获得信息效率高。可是缺少社交属性和社交关系的积累也是头条的软肋所在。腾讯目前正在低调运行天天快报,与微信平台以及腾讯媒体开放平台分开,未来未必不会整合。那样就可以结合社交推荐和算法推荐,尤其可以利用朋友圈里各种专业人士、学者点赞推荐或阅读撰写资讯的行为(只要他们愿意公开)。帝国的反击迟早要来,头条们的算法武士应该尽早打造具有熵增能力的资讯关系,并发展一种把兴趣人格化的算法社交方式。算法需要人,这话不止是说需要社交关系,而是策划者的想象力。我见过有人围绕豆瓣上的影片打分,手工收集打分者读书数据,非常有趣。比如给电影《胜利大阅兵》五星的人喜欢看什么书,给一星的人又看什么书。在这个基础上,如果加以聪明的算法,就可以激发出新型社交模式,不过这里不展开。蓝媒汇报告称头条购买了不少媒体的股份,比如世界说、新榜、华尔街见闻等等。从算法的逻辑讲,我以为这不是最优的收购方向。在我看,与那些拥有社交数据的媒体比如微博合作才是对的。头条们应该收购豆瓣。不是说要做社交,而是要拥有社交数据并利用算法激活之。豆瓣之类集聚的人之想象力,为什么不能和机器算法互相滋养?这些技术起家的公司已聘请资深媒体人加盟,头条请了林楚方,一点资讯请了吴晨光,都是媒体圈很有名气的主编级人物。不过媒体人目前的作用主要是公关,撬动自己掌握的丰富媒体资源,或者利用自己的表达能力替不善言辞的技术人表述产品。我觉得,如果媒体灵魂和算法的结合暂时困难的话,何方先做智库?眼下官方对智库建设青睐有加,头条们的数据再加一点媒体眼光,就可提供很多技术落后智库无法提供的报告。这需要人的想象力。比如最近帝吧远征脸书,举国震惊,也引发了很多评论。无论各方如何评价,这都是90后乃至00后网络新人的一次亮相。各方都不太了解他们,商业公司需要了解他们,政府机构也需要了解他们。众说纷纭,很多是从主观偏见出发。想了解他们有很多办法,比如去采访他们,去贴吧收集材料做统计。但百度或者头条们显然可以有更快捷的智能办法,能够通过相关评论资讯的阅读和其他关联数据,来考察相关人群的特点,他们的地域分布,他们的收入状况,他们的兴趣爱好。洞察并善用人的智慧,发挥人群的博弈,而不是让个人成为资讯喂食对象,才会让算法也变得更有灵气。今日头条、一点资讯和天天快报,哪一家会走得更远?